Multiple Choice
Identify the choice that best completes the statement or answers the question.

1. The maximum cross-sectional area that can be occupied by conductor in a 40-foot run of conduit is 53% where the conduit contains ____ conductor(s).
 a. 5 c. 2 d. 3
 b. 1

2. Per the NEC which of the following bends are permitted in an EMT conduit run between two junction boxes?
 a. two-90’s plus one-45° three-point saddle plus one-12° offset
 b. one-back-to-back 90 plus two-60° 3-point saddles
 c. two-30° offsets plus three 90’s
 d. any one of these
 e. none of these

3. The salesroom of a service station is considered a Class _________ Division________ location.
 a. 1,1 c. 2,1
 b. 1,2
 d. unclassified

4. Wiremold® surface metal raceway is to be installed in a science lab. The raceway is $1\frac{1}{4}$" deep and $3\frac{3}{8}$" high. There will be 18 circuits installed. Each circuit is protected by a GFCI circuit breaker in the panelboard. 12 AWG THHN/THWN copper conductors will be installed in the raceway. The ambient temperature around the raceway is 80° F. The ampacity of each circuit conductor is ___ amps.
 a. 15 b. 30 c. 13.5 d. 20 e. 12

5. Section 400.7 of the NEC® states that flexible cords and cables shall be used in ____.
 a. wiring fixtures c. elevator cables
 b. wiring cranes d. all of these are permitted

6. What entity is allowed to have people it employs make repairs to electrical apparatus and systems on property that is not necessarily a single family dwelling or farm without a license?
 a. the power company c. telecommunications company
 b. an electrical contracting firm d. housing authority

7. The XO terminal or common point of a separately derived system or transformer is referred to by the 2011 NEC as the:
 a. neutral conductor. d. grounded service entrance conductor.
 b. grounding electrode point. e. white terminal.
 c. neutral point.

8. What is the ampacity of three #6 THWN conductors installed in open air, if the ambient air temperature is 123°F?
 a. 65 c. 36.4
 b. 49.4 d. 54

9. Rigid Metal Conduit (RMC) is generally made of galvanized steel or aluminum but special applications, such as for swimming pools or in chemical plants, may require the use of ____ conduit.
 a. bronze b. stainless steel c. either “a” or “b” d. neither “a” nor “b”
10. Type NM and NMS cable shall not be installed:
 a. or fished in air voids in masonry block
 b. above a suspended ceiling
 c. in multi-family dwellings
 d. in conduit or tubing or tile walls.
 e. in wet or damp locations

11. You are to install RMC between two equipment enclosures. You don’t know how many or what size wires will have to be pulled into the flex. If you install the largest available this is trade size ___.
 a. 6
 b. 3
 c. 3½
 d. 5
 e. 4

12. Two THHN/THWN copper circuit conductors are connected to a 2-pole breaker in a 120/240 volt 3Ø, 4-wire panelboard. The circuit serves a load that draws 13.7 amps. The distance between the panel and the load is 95 feet. The smallest conductors you can install to the load are ______. The specifications limit the voltage drop to 2.4 %.
 Use K = 11.2 to solve this problem.
 a. 10
 b. 6
 c. 14
 d. 8
 e. 12

13. A 15 amp multiwire branch circuit is connected to breakers 1 & 3 in a 120/208 volt 3Ø, 4-wire panelboard. ___ if the “hots” from breakers 1 & 3 are connected to a 2800 watt load.
 a. An overload will occur and the breaker will trip
 b. A short-circuit will occur and the breaker will trip
 c. A ground-fault will occur and the breaker will trip
 d. The load will operate normally and the breaker will not trip

14. The NEC includes an informational note that indicates that in an agricultural environment enclosures made of ___ material may corrode.
 a. aluminum
 b. magnetic ferrous
 c. either “a” or “b”
 d. neither “a” nor “b”

15. In all dwelling units, a general use receptacle is not required:
 a. to serve wall counter spaces over 12 inches wide.
 b. on a 4’ by 6’ balcony with no stairway to the ground.
 c. in an unfinished basement.
 d. in an alcove more than 2’ deep and 3’ feet long.
 e. a receptacle is required in all of these locations.

16. The secondary conductors from a 45 KVA, Group H1 transformer are connected to a fusible safety switch, fused at 70 amps. The smallest secondary conductors permitted to be installed, between the transformer and the switch, are ___ AWG. For this particular load, the NEC permits 8 AWG conductors to be installed between the disconnect and the load.
 a. 10
 b. 4
 c. 6
 d. 3
 e. 8

17. _____ of the NEC® defines a bathroom as an area that has a basin, with one or more of the following: a toilet, a tub, or a shower.
 a. Section 218.8(B)
 b. Article 100
 c. Section 210.8(B)(2)Ex
 d. Article 110

18. Where above ground exterior branch circuit conduits enter a building the conduit is required to be sealed “to prevent condensation” per ____ in the NEC.
 a. 230.92
 b. 300.5(G)
 c. 230.8
 d. 300.7(A)
 e. 300.50(E)

19. What is the voltage in a circuit that has a 20 Ohm resistance and draws 6 amps?
 a. 100V
 b. 140V
 c. 26V
b. 120V
d. 260V

20. Section _____ of the NEC® states that the receptacles installed over kitchen and around wet bar countertops, must be GFCI protected.
 a. 210.8(A)(6) and (7)
b. 555.3
c. 552.60
d. b and c

21. Where a 3/0 AWG THHN/THWN copper conductor is inside a panelboard and connected to a breaker it can carry ___ amps of current. The breaker has a 75°C rating.
 a. 195
b. 80
c. 145
d. 72
e. 175

22. The service point is located at the ___. The Power Company owns the pole-mounted transformer and has provided power to a customer-owned pad-mounted transformer. A service lateral has been installed to the meter socket on the customer's building.
 a. weatherhead
b. pole-mounted transformer
c. pad-mounted transformer
d. meter socket

23. Which of the following are characteristics of THHN/THWN insulation?
 a. It is heat-resistant.
b. It can be installed in wet, damp, or dry locations.
c. It is flame-retardant.
d. It is moisture-resistant.
e. All ("a" through "d") are true.

24. With an above ground gasoline bulk storage tank, __________ above the top of the tank is considered a Class 1, Division 2 location.
 a. 12 inches
b. 18 inches
c. 10 feet
d. 20 feet

25. On an outdoor gasoline dispenser, up to ________ above grade level and within _____ of the enclosure is considered a Class 1, Division 2 location.
 a. 12 inches, 10 feet
b. 18 inches, 10 feet
c. 12 inches, 20 feet
d. 18 inches, 20 feet

26. Schedule 40 PVC is to be installed in a straight run between two junction boxes on the back exterior wall of a strip shopping center. The summertime temperature is 100°F and the wintertime temperature is −5°F. An expansion fitting would be required in this 80' run of PVC because it would expand ___ inches between winter and summer.
 a. 3.85
b. 3.08
c. 3.408
d. 4.26
e. 5.325

27. Article _____ of the NEC® states the requirements associated with overcurrent protection for 600 volts and under.
 a. 100
b. 210
c. 240
d. 260

28. __________ are required to be installed on ungrounded systems.
 a. Ground defectors
b. Ground detectors
c. Ground detectives
d. none of the above

29. Fixed cable wiring above Class 1, Div. 2 locations shall be permitted to be___________ Cable.
 a. MI
b. TC
c. MC
d. all of the above
30. A 1-inch PVC conduit is to be run underground below an area adjacent to a house. The conduit will contain circuit conductors feeding a post luminaire in the front yard. The minimum depth the conduit must be below the present dirt surface level (future driveway) is ___ inches. After the trench is backfilled a 6” thick driveway will be poured on top of the dirt surface.
 a. 24 b. 18 c. 6 d. 0 e. 12

31. Three 460-volt, three-phase motors are on the same feeder circuit, with one motor 25 hp, another 20 hp, and the third 30 hp. What size THWN copper conductor will be needed for the feeder conductors?
 a. 4 AWG b. 2 AWG c. 1/0 AWG d. 2/0 AWG

32. A 1 1/4-inch PVC conduit is to be run underground below an area that will be used as a parking lot. The conduit will contain circuit conductors feeding a sign for this hospital. The minimum depth the conduit must be below the present dirt surface level is ___ inches. After the trench is backfilled concrete will be poured on top of the dirt and will be 6” thick.
 a. 6 b. 0 c. 12 d. 24 e. 18

33. A system neutral derived from a _______________ may be used to ground a high voltage system.
 a. grounding transformer c. grounding transactor
 b. grounding transmitter d. all of the above

34. In a 30 foot run of conduit containing two conductors the maximum cross-sectional area that can be occupied by conductors is ___ %.
 a. 31 b. 40 c. 53 d. 60 e. 100

35. Article 300 covers wiring that is factory-installed in ____.
 a. water heaters d. all of the above
 b. air-handlers e. none of the above
 c. refrigeration condenser units

36. Where a calculation results in an ampacity requirement that does not match the standard rating of an overcurrent protective device, which of the following is permitted?
 a. Select an OCPD that is rated not more than twice the ampacity of the conductor.
 b. Select an OCPD with the next higher standard ampere rating.
 c. Select an OCPD that is rated not more than 125% of the ampacity of the conductor.
 d. Select an OCPD that has been approved by special permission of the AHJ.

37. Which of the following conductor types are available in the 1500 KCMIL size?
 a. THHN b. XHHW c. TFE d. all of these

38. 10 AWG conductors can be spliced inside a run of conduit using ____.
 I. irreversible connections II. exothermic welding III. wire nuts
 a. III only b. neither I nor II nor III c. I or II or III d. I only
 e. I or II only

39. What size copper would be the grounding electrode conductor if the size of the largest service-entrance parallel conductor is 750 kcmil?
 a. 8 AWG b. #2 c. #2/0
 d. #3/0 e. #4/0
40. A 75 KVA 480 – 120/208 volt 3Ø, 4-W transformer feeds a panelboard with a 200 amp main breaker. The transformer is supplied power from a 100 Amp circuit breaker in Panel HD. The length of the secondary conductors between the transformer and the main breaker is 7 feet. These conductors must be ___ AWG or larger.
 a. 2/0
 b. 4/0
 c. 3/0
 d. 1/0
 e. 1
 f. no minimum

41. RMC is installed in the slab floor of a psychiatric hospital. There must be a minimum of ___ inches of concrete covering the conduit.
 a. 18
 b. 6
 c. 24
 d. 4
 e. 0

42. Electrical wiring that is installed in and under aircraft hangar floors shall comply with the requirements for a ___ location.
 a. Class I, Division 1
 b. Class I, Division 2
 c. Class I, Zone 0
 d. Class I, Zone 1
 e. Class I, Zone 2

43. A 4-square box with a 4.7 cu. in. plaster ring will contain the following:
 (one) isolated ground receptacle
 (one) 12/2 with ground AC cable (BX) with exterior connector
 (one) single-pole switch
 (one) 14/2 MC cable with exterior connector
 The receptacle is on a 20 Amp circuit and the switch is for lighting connected to a 15 Amp circuit. The shallowest 4-square box you can use for this installation is 4" x 4" x ____".
 a. 1\1/4
 b. 1\1/2
 c. 2\1/8

44. A 225 KVA 480 – 120/208 volt 3Ø, 4-W transformer feeds a panelboard with a 225 amp main breaker. The length of the secondary conductors between the transformer and the main is 9 feet. These conductors must be at least ___ in size where the primary breaker is 300 Amps.
 a. 1 AWG
 b. 4/0 AWG
 c. 4 AWG
 d. 1/0 AWG
 e. none of these

45. What is the total power in a series circuit when the loads equal 150 watts, 32.5 watts, and 63.7 watts?
 a. 236.4
 b. 256.7
 c. 246.2
 d. 346.2

46. Section ____ of the NEC® states that stockrooms that are cutoff and well ventilated shall not be classified.
 a. 510.6
 b. 511.(10)(B)
 c. 511.5
 d. 513.3(D)

47. The minimum size THWN/THHN aluminum conductor permitted to serve a 95 amp load that will operate continuously is ___ AWG.
 a. 2
 b. 4
 c. 1/0
 d. 3
 e. 1

48. Where multiwire branch circuits are connected to breakers in a 277/480 volt 3Ø, 4-wire panel the neutral has to be counted as a current-carrying conductor (when applying ampacity correction factors) where the connected loads consist of ___ lighting.
 a. fluorescent
 b. HID
 c. both “a” & “b”
 d. neither “a” nor “b”

49. Section _____________ of the NEC® states industrial establishments where supervision and maintenance are involved and equipment grounding conductor program is assured that no GFCI protection is required on receptacle outlets.
 a. 555.3
 b. 590.6(A) Ex.
 c. 590.6(A) Ex.
50. Types NM, NMC, and NMS shall be permitted in _____ locations.
 a. one and two family dwellings c. cable trays where identified for use
 b. multiple family d. all of these locations

51. Which of these Trade Size 1\textfrac{1}{4} raceways has the largest cross-sectional area?
 a. LFMC c. RMC e. Schedule 80 PVC
 b. EMT d. FMC

52. Section _____ of the NEC® states that the circuit breaker shall be clearly marked with "On" and "Off"
 a. 340.17 c. 210.16
 b. 240.81 d. 200.9
Spring Test 8 due 05/03/2013
Answer Section

MULTIPLE CHOICE

1. ANS: B
 2011 NEC: Ch 9 - T.1
 PTS: 1 REF: 2011 NEC: Ch 9 - T.1 OBJ: Obj 208.2 Worksheet
 NAT: Obj 208.2 ABank

2. ANS: A
 two-90's plus one-45° three-point saddle plus one-12° offset = 90 + 90 + 90 + 24 = 294°
 one-back-to-back 90 plus two-60° 3-point saddles = 90 + 90 + (2 x 120) = 420°
 two-30° offsets plus three 90's = (2 x 60) + (3 x 90) = 390°
 2011 NEC: 358.26
 PTS: 1 REF: 2011 NEC: 358.26 OBJ: Obj 208.4 Worksheet
 NAT: Obj 208.4 ABank TOP: Conduit bends

3. ANS: D
 NEC® Table 514.3(B)(1)
 PTS: 1 REF: NEC® Table 514.3(B)(1) OBJ: 431-3

4. ANS: E
 386.22:
 1) raceway > 4 sq. in.
 2) GFCI bkrs ⇒ 2 wires per ckt: > 30 ccc's ⇒ must derate
 3) area x 20% = (1.25 x 3.375)(.2) = (4.21875)(.2) = 0.84375
 (0.0133) x 36 = .4788 in² ⇒ OK for 3)
 2) ⇒ requires derate
 30 x 40% = 12 amps
 2011 NEC: 386.22
 PTS: 1 REF: 2011 NEC: 386.22 NAT: Obj 208.1 ABank
 TOP: Ampacity Correction

5. ANS: D
 NEC® Section 400.7
 PTS: 1 REF: NEC® Section 400.7 OBJ: 426-7

6. ANS: D
 479.540(4)(a) A person is not required to obtain a license for the repair or replacement of light fixtures,
light switches, lighting ballast, electrical outlets or smoke alarms in a building used for housing purposes
that is owned, leased, managed or operated by a housing authority and the person doing the repair or
replacement is a member of the housing authority’s regular maintenance staff.
 PTS: 1

7. ANS: C
 Article 100
 Ugly’s/Ferm’s reference books
 PTS: 1
8. **ANS:** B
65 x .76 = 49.4

NEC® Table 310.15(B)(16)

PTS: 1 REF: NEC® Table 310.15(B)(16) OBJ: 423-4

9. **ANS:** C
2011 NEC: 344.2

PTS: 1 REF: 2011 NEC: 344.2 OBJ: Obj 207.2 Worksheet
NAT: Obj 207.2 ABank TOP: Ferrous metals

10. **ANS:** E
334.12(B)(4)

PTS: 1

11. **ANS:** A
2011 NEC: 344.20(B)

PTS: 1 REF: 2011 NEC: 344.20(B) NAT: Obj 208.2 ABank
TOP: Raceway sizes

12. **ANS:** E
2.1% $V_d = (240)(.024) = 5.76$ volts
cma = (2)(K)(I)(L) ÷ (2.1% V_d) = (2)(11.2)(13.7)(95) ÷ (5.76) = 5061 cmils ⇒ #12

Ugly's/Ferm's ref.

PTS: 1 REF: Gen Knowledge NAT: Obj 222.3 ABank
TOP: 1ph Vd: size wire

13. **ANS:** D
2800 ÷ 208 = 13.5 amps ⇒ normal operation
Ugly's/Ferm's ref.

PTS: 1 REF: Gen Knowledge NAT: Obj 204.3 ABank
TOP: SC/GF/OL/Normal

14. **ANS:** C
2011 NEC: 547.5(C)(3) Informational Note 2

PTS: 1 REF: 2011 NEC: 547.5(C)(3) Informational Note
OBJ: Obj 207.2 Worksheet NAT: Obj 207.2 ABank
TOP: Ferrous metals

15. **ANS:** E
210.52, OAR 918-305-0130(3)(a)

PTS: 1

16. **ANS:** B
70 amp OCP ⇒ 4 AWG

2011 NEC: 240.21(C)(2)

PTS: 1 REF: 2011 NEC: 240.21(C)(2) OBJ: Obj 223.5 Worksheet
NAT: Obj 223.5 ABank KEY: General 3-ph Questions
17. ANS: B
NEC® Article 100

PTS: 1 REF: NEC® Article 100 OBJ: 428-5

18. ANS: D
2011 NEC: 300.7(A)

PTS: 1 REF: 2011 NEC: 300.7(A) NAT: Obj 207.2 ABank

19. ANS: B
E=IR
E=6 amps x 20 Ohms
E=120 volts

Ugly’s/Ferm’s ref.

PTS: 1 REF: EMC p. 13 OBJ: 319-2

20. ANS: A

NEC® Section 210.8(A)(6) and (7)

PTS: 1 OBJ: 428-2

21. ANS: E

PTS: 1 REF: 2011 NEC: 110.14(C)(1)(b)(1) w/T. 310.15(B)(16) OBJ: Obj 204.2 Worksheet NAT: Obj 204.2 ABank
TOP: AmpCorr-Capacity

22. ANS: B
2011 NEC: 100

PTS: 1 REF: 2011 NEC: 100 NAT: Obj 203.1 ABank

23. ANS: E
2011 NEC: T 310.104(A)

PTS: 1 REF: 2011 NEC: T 310.104(A) NAT: Obj 204.1 ABank

24. ANS: C
NEC® Sec 515.3

PTS: 1 REF: NEC® Sec 515.3 OBJ: 431-4

25. ANS: D
NEC® Table 514.3(B)(1)

PTS: 1 REF: NEC® Table 514.3(B)(1) OBJ: 431-3

26. ANS: C
4.26 x 80/100 = 3.408
2011 NEC: 352.44; T.352.44(A)

PTS: 1 REF: 2011 NEC: 352.44; T.352.44(A) OBJ: Obj 208.1 Worksheet NAT: Obj 208.1 ABank

27. ANS: C
NEC® Article 240
PTS: 1 REF: NEC® Article 240 OBJ: 423-7

28. ANS: B
 2011 NEC 250.21(B)

PTS: 1 REF: EG&B p. 37 OBJ: 313-4

29. ANS: D
 NEC® Sec 501.10(B)(5)

PTS: 1 REF: NEC® Sec 501.10(B)(5) OBJ: 431-5

30. ANS: E
 18 required to finish – 6 for concrete = 12 inches

 2011 NEC: T. 300.5

PTS: 1 REF: 2011 NEC: T. 300.5 NAT: Obj 207.3 ABank

31. ANS: B
 30 hp = 40 amperes x 1.25 = 50 amperes
 25 hp = 27.5 amperes x 1.25 = 34 amperes
 20 hp = 21.6 amperes x 1.25 = 27 amperes
 Total 111 amperes
 NEC® Table 310.15(B)(16) shows 2 AWG THWN copper
 NEC® Tables 430.250, Table 310.15(B)(16)

PTS: 1 REF: NEC® Tables 430.150 | 310.16 OBJ: 429-2

32. ANS: E
 24 required to finish – 6 for concrete = 18 inches

 2011 NEC: T. 300.5

PTS: 1 REF: 2011 NEC: T. 300.5 OBJ: Obj 207.3 Worksheet
 NAT: Obj 207.3 ABank

33. ANS: A
 NEC® Section 250.182

PTS: 1 REF: NEC® Section 250.182 OBJ: 315-4

34. ANS: A
 2011 NEC: Ch 9 - T.1

PTS: 1 REF: 2011 NEC: Ch 9 - T.1 OBJ: Obj 208.2 Worksheet
 NAT: Obj 208.2 ABank

35. ANS: E
 2011 NEC: 300.1(B)

PTS: 1 REF: 2011 NEC: 300.1(B) OBJ: Obj 207.2 Worksheet
 NAT: Obj 207.2 ABank

36. ANS: B
 2011 NEC: 240.4(B)

PTS: 1 REF: 2011 NEC: 240.4(B) OBJ: Obj 204.3 Worksheet
 NAT: Obj 204.3 ABank

37. ANS: B
 2011 NEC: T 310.104(A)
38. ANS: B
2011 NEC: 300.13(A)

PTS: 1 REF: 2011 NEC: T 310.104(A) NAT: Obj 204.1 ABank

39. ANS: C
NEC® Table 250.66

PTS: 1 REF: NEC® Table 250.66 OBJ: 424-6

40. ANS: C

\[\text{secondary ampacity} \geq \left[\frac{(\text{Pri OCPD} + 10) \times (E_{\text{pri line}} + E_{\text{sec line}})}{100} \right] \]

\[= \left[\frac{(100/10 \times (480/208))}{100} \right] = 23.1 \text{ Amps} \Rightarrow 14 \text{ AWG} \]

versus: 200 Amp sec OCPD \Rightarrow 3/0 AWG

2011 NEC: 240.21(C)(2)

41. ANS: E
2011 NEC: T. 300.5

PTS: 1 REF: 2011 NEC: T. 300.5 OBJ: Obj 207.3 Worksheet
NAT: Obj 207.3 ABank

42. ANS: A
2011 NEC: 513.8(A)

PTS: 1 REF: 2011 NEC: 513.8(A) OBJ: 207 NEC Worksheet
NAT: 207 NEC ABank

43. ANS: A

<table>
<thead>
<tr>
<th>#14</th>
<th>#12</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

total wires 5 5

(5 \times 2.0) + (5 \times 2.25) = 21.25 \text{ in}^3 \text{ is total req'd volume}

21.25 - 4.7 = 16.55 \text{ in}^3 \text{ box req'd} \Rightarrow 1^{1/4}

2011 NEC: 314.16

44. ANS: B

\[\text{secondary ampacity} \geq \left[\frac{(\text{Pri OCPD} + 10) \times (E_{\text{pri line}} + E_{\text{sec line}})}{100} \right] \]

\[= \left[\frac{(300/10 \times (480/208))}{100} \right] = 69.23 \text{ Amps} \Rightarrow 4 \text{ AWG} \]

versus: 225 Amp sec OCPD \Rightarrow 4/0 AWG

2011 NEC: 240.21(C)(2)

45. ANS: C

150 + 32.5 + 63.7 = 246.2
Ugly’s/Ferm’s ref.

46. ANS: D
NEC® Sec 513.3(D)
PTS: 1 OBJ: 319-2

47. ANS: C
95 \times 1.25 = 118.75 \Rightarrow 1/0

2011 NEC: 210.19(A)(1) w/T. 310.15(B)(16)

NAT: Obj 204.2 ABank TOP: CondSizing-Continuous

48. ANS: C
2011 NEC: 310.15(B)(5)(c)

PTS: 1 REF: 2011 NEC: 310.15(B)(5)(c) OBJ: Obj 204.2 Worksheet
NAT: Obj 204.2 ABank

49. ANS: C
NEC® Sec. 590.6(A) Ex.

PTS: 1 REF: NEC® Sec. 590.6(A) Ex. OBJ: 428-4

50. ANS: D
NEC® Section 334.10

PTS: 1 REF: NEC® Section 334.10 OBJ: 425-4

51. ANS: A
LFMC \ = \ 1.528 \quad \text{EMT} = \ 1.496 \quad \text{RMC} = \ 1.526 \quad \text{FMC} = \ 1.277 \quad 80\text{-PVC} = \ 1.237

2011 NEC: Ch 9 - T.4

PTS: 1 REF: 2011 NEC: Ch 9 - T.4 OBJ: Obj 208.2 Worksheet
NAT: Obj 208.2 ABank

52. ANS: B
NEC® Section 240.81

PTS: 1 REF: NEC® Section 240.81 OBJ: 423-8